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h Instituto Nacional do Semiárido/Núcleo de Desertificação e Agroecologia, Campina Grande, Brazil   

A R T I C L E  I N F O   

Keywords: 
Sensible heat flux 
Aerodynamic resistance for heat transfer 
Surface energy balance 
Caatinga 
Google Earth Engine 

A B S T R A C T   

Improvement of evapotranspiration (ET) estimates using remote sensing (RS) products based on multispectral 
and thermal sensors has been a breakthrough in hydrological research. In large-scale applications, methods that 
use the approach of RS-based surface energy balance (SEB) models often rely on oversimplifications. The use of 
these models for Seasonally Dry Tropical Forests (SDTF) has been challenging due to incompatibilities between 
the assumptions underlying those models and the specificities of this environment, such as the highly contrasting 
phenological phases or ET being mainly controlled by soil–water availability. We developed a RS-based SEB 
model from a one-source bulk transfer equation, called Seasonal Tropical Ecosystem Energy Partitioning 
(STEEP). Our model uses the plant area index to represent the woody structure of the plants in calculating the 
moment roughness length. We included the parameter kB− 1 and its correction using RS soil moisture in the 
calculation of the aerodynamic resistance for heat transfer. Besides, λET caused by remaining water availability 
in endmembers pixels was quantified using the Priestley-Taylor equation. We implemented the algorithm on 
Google Earth Engine, using freely available data. To evaluate our model, we used eddy covariance data from four 
sites in the Caatinga, the largest SDTF in South America, in the Brazilian semiarid region. Our results show that 
STEEP increased the accuracy of ET estimates without requiring any additional climatological information. This 
improvement is more pronounced during the dry season, which, in general, ET for these SDTF is overestimated 
by traditional SEB models, such as the Surface Energy Balance Algorithms for Land (SEBAL). The STEEP model 
had similar or superior behavior and performance statistics relative to global ET products (MOD16 and PMLv2). 
This work contributes to an improved understanding of the drivers and modulators of the energy and water 
balances at local and regional scales in SDTF.   

1. Introduction 

Quantifying evapotranspiration (ET) is one of the largest research 
challenges in hydrology because ET is driven by a complex combination 
of atmospheric, vegetation, edaphic, and terrain characteristics (Wang 
et al., 2016; Bhattarai et al., 2017). The traditional techniques to 
quantify ET, e.g. Bowen ratio or eddy covariance system (EC), are 

limited to areas up to ~10 km2 (Allen et al., 2011; Anapalli et al., 2016; 
Mcshane et al., 2017; Mallick et al., 2018; Chu et al., 2021). Over the 
past decades, models based on satellite remote sensing (RS) data have 
been increasingly developed and applied to estimate ET for multiple 
temporal and spatial scales (Anderson et al., 2011; Chen and Liu, 2020). 
RS-based surface energy balance (SEB) models estimate ET in terms of 
energy per unit area (e.g. W/m2), i.e. by latent heat flux, λET, where λ is 
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the latent heat of vaporization of water (Shuttleworth, 2012; Barraza 
et al., 2017; Trebs et al., 2021). SEB models obtain λET by subtracting 
the soil heat (G) and sensible heat (H) fluxes from the net radiation (Rn). 
Estimates of Rn obtained with RS data have been improving, and this flux 
can nowadays be estimated with acceptable precision (Allen et al., 2011; 
Ferreira et al., 2020). The G:Rn ratio can be predicted with reasonable 
accuracy through the use of empirical relationships with soil, vegeta
tion, and temperature characteristics (Bastiaanssen, 1995; Murray and 
Verhoef, 2007; Allen et al., 2011; Danelichen et al., 2014). Challenges in 
estimating λET as a residual of the energy balance are mostly associated 
with the uncertainties in H (Gokmen et al., 2012; Paul et al., 2014; 
Mohan et al., 2020a; Mohan et al., 2020b; Costa-Filho et al., 2021). The 
bulk heat transfer calculation that is used to compute H involves vari
ables related to the temperature gradient and to the aerodynamic 
resistance for heat transfer (rah). If any of these variables are poorly 
estimated, the performance of SEB models will be reduced (Verhoef 
et al., 1997a, b; Su et al., 2001; Gokmen et al., 2012; Costa-Filho et al., 
2021; Liu et al., 2021; Trebs et al., 2021). 

The difference between the aerodynamic surface temperature and air 
temperature (dT) drives H. However, the lack of techniques to measure 
the aerodynamic surface temperature required strategies to use the 
radiometric land surface temperature (LST) as an alternative. Bas
tiaanssen et al. (1998), when creating the Surface Energy Balance Al
gorithms for Land (SEBAL), proposed that dT can be estimated with a 
linear relationship on LST. This requires identifying areas with con
trasting extreme conditions in terms of cover and humidity, e.g. dry bare 
and well-watered soil surfaces, commonly known as hot/dry and 
cold/wet endmembers, respectively. The sensible heat transfer equation 
in conjunction with the surface energy balance in hot/dry and cold/wet 
endmembers allows one to obtain the coefficients of the linear rela
tionship between dT and LST. Bastiaanssen et al. (1998) proposed the 
selection of endmembers by assuming that H in the cold/wet endmem
ber and λET in the hot/dry endmember are zero. However, these as
sumptions are not necessarily valid (Singh and Irmak, 2011; Singh et al., 
2012). The cold/wet endmember refers to an area with a well-irrigated 
crop surface having ground fully covered by vegetation, so it can be 
assumed that a non-negligible amount of sensible heat can still be 
generated by such a surface. Similarly, for the hot/dry endmember, an 
area dominated by bare soil, there may be a λET resulting from ante
cedent rainfall events, hereafter referred to as remaining λET. Some 
studies have quantified H and λET in hot/dry and cold/wet endmembers 
(Trezza, 2006; Allen et al., 2007; Singh and Irmak, 2011); they have 
shown that this quantification produces a better approximation of daily 
ET. 

Based on the Monin-Obukhov similarity theory, rah is defined as a 
function of the momentum (z0m) and heat (z0h) roughness lengths. 
Theoretically, the sum of the zero plane displacement height (d0) 
together with z0h defines the level of the effective source of sensible heat 
(Thom, 1972; Chehbouni et al., 1996; Gokmen et al., 2012) and, 
therefore, z0h constitutes one of the most crucial parameters for the 
accurate calculation of H (Verhoef et al., 1997a; Su et al., 2001). How
ever, as z0h cannot be measured directly, it is commonly calculated via 
the dimensionless parameter kB− 1 formulated to express the excess 
resistance of heat transfer compared to momentum transfer (Owen and 
Thomson, 1963). In RS-based SEB models, oversimplifications are pre
sent in the calculation of rah, e.g. different land use types are repre
sented by the same values for z0h (Bastiaanssen et al., 2005; Allen et al., 
2007) and kB− 1 (Bastiaanssen et al., 1998), or the values for the aero
dynamic parameters are kept constant in time and space. However, these 
parameters should not be considered constant, nor set to zero, because 
this can lead to large inaccuracies in the estimates of H (Verhoef et al., 
1997a) and, consequently, of λET (Liu et al., 2007; Paul et al., 2014; Liu 
et al., 2021). Studies have shown that kB− 1 typically ranges from 1 to 12, 
depending on the dominant surface coverage (Kustas et al., 1989a; 
Troufleau et al., 1997; Verhoef et al., 1997a; Lhomme et al., 2000; Su 
et al., 2001). Studies confirm that if appropriate values of kB− 1 are used, 

H can be accurately estimated using LST via the bulk transfer method 
(Stewart et al., 1994; Su et al., 2001; Jia et al., 2003; Paul et al., 2013). 

Another problem with RS-based SEB models is that these methods 
are imprecise when applied to non-agricultural environments, such as 
forests, deserts, sparse savannahs or rangelands, and riparian systems, 
because of the heterogeneous nature of the vegetation, terrain, soils, and 
water availability in these environments. This causes the flux estimates 
obtained with the SEB methods, and the underlying aerodynamic pa
rameters, to be highly variable (Allen et al., 2011; Gokmen et al., 2012; 
Barraza et al., 2017; Chen and Liu, 2020; Costa-Filho et al., 2021). This is 
especially true in Seasonally Dry Tropical Forests (SDTF) regions, where 
there is a large spatio-temporal variation in vegetation density, in 
vegetation structural parameters such as canopy height, crown shape 
and branching, and water availability. SDTF are an important tropical 
biome and one of the most threatened ecoregions of the world (Moro 
et al., 2015; Pennington et al., 2018). SDTF are broadly defined as forest 
formations in tropical regions characterised by marked seasonality in 
rainfall distribution, resulting in a prolonged dry season that usually 
lasts five or six months (Pennington et al., 2009; Paloschi et al., 2020). 
The most extensive contiguous areas of SDTF are in the neotropics, 
comprising more than 60% of the remaining global stands of this 
vegetation (Miles et al., 2006; Queiroz et al., 2017). The physiognomies 
exhibited by SDTF are heterogeneous, with vegetation ranging from tall 
forests with closed canopies to scrublands rich in succulents and 
thorn-bearing plants (Moro et al., 2015; Paloschi et al., 2020). SDTF 
foliage patterns are adapted to the intense climate and water season
ality, which is highly dependent on interannual climate variability 
(Alberton et al., 2017; Medeiros et al., 2022). The vegetation drops most 
leaves during the dry season, and the first rainfall events trigger a rapid 
leaf growth in the wet season (Alberton et al., 2017; Paloschi et al., 
2020; Medeiros et al., 2022). SDTF are being rapidly degraded (12% 
between 1980 and 2000), highlighting an urgent priority for their 
conservation (Moro et al., 2015; Maia et al., 2020). The risks faced by 
SDTF mainly stem from anthropogenic disturbance effects, which range 
from local habitat loss to global climate change, leading to biodiversity 
loss and reductions in biomass (Allen et al., 2017; Maia et al., 2020). 

Application of SEB models to estimate evapotranspiration over SDTF 
has been challenging due to the incompatibility between the existing 
assumptions of the models and the specificities of these forests. Precip
itation seasonality is the primary phenological regulator of SDTF (Moro 
et al., 2016; Campos et al., 2019; Paloschi et al., 2020), and land-cover 
patterns show distinct intra- and inter-annual spectral responses (Cunha 
et al., 2020; Andrade et al., 2021; Medeiros et al., 2022). Therefore, 
biophysical remotely-sensed variables, such as Normalized Difference 
Vegetation Index (NDVI) and surface albedo, which are usually used to 
select the endmembers, exhibit high spatial and temporal variability in 
SDTF, which causes ET estimates from the SEB models to lack fidelity 
(Silva et al., 2019). Selection of suitable roughness parameters such as 
z0m, d0, and kB− 1 is important for the correct quantification of the en
ergy balance in SDTF. However, these parameters are more challenging 
to obtain in SDTF than for evergreen forests, as in addition to vegetation 
height, other characteristics such as plant density, above-ground plant 
structure and the strong seasonality of phenology (Alberton et al., 2017; 
Miranda et al., 2020; Paloschi et al., 2020) have a considerable effect on 
the turbulent transfer in these forests. Another key issue is how to verify 
the results of SEB methods due to the scarcity, in many regions, of 
terrestrial observations and the uneven spatiotemporal distribution of 
monitoring data. SEB models may not satisfactorily represent ET in re
gions with sparse vegetation and high climatic seasonality, such as SDTF 
(Senkondo et al., 2019; Laipelt et al., 2021; Melo et al., 2021). The main 
reason is that these methods have generally been evaluated and/or 
parameterized using sites located in other ecosystems and climates in 
North America, Europe, Australia, East Asia, and in agricultural regions 
that have characteristics quite distinct from SDTF (Melo et al., 2021). 
Therefore, a better quantification of ET, especially in regions with high 
climatic seasonality, will help to design better water management 
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policies that will be able to deal with the effects of climate variability, 
land use/cover and climate changes (Lima et al., 2021). 

We hypothesize that a SEB model that improves or considers esti
mates of rah via z0m and kB− 1 will improve H and ET estimates for STDF. 
To test this assumption, we introduce a novel calibration-free SEB model 
based upon a one-source bulk transfer equation, herein referred to as 
Seasonal Tropical Ecosystem Energy Partitioning (STEEP). The STEEP 
model aims to improve H and ET estimates for STDF by incorporating 
the woody structure of plants through the Plant Area Index (PAI), and 
soil moisture obtained by remote sensing to help represent the season
ality of the aerodynamic and surface variables that drive the energy 
fluxes. To obtain the coefficients of the linear relationship between dT 
and LST, we computed H by the surface energy balance, and the 
remaining λET through the principle of the Priestley-Taylor equation in 
the hot/dry and cold/wet endmembers. STEEP is designed to take 
advantage of the extensive free database available on the Google Earth 
Engine (GEE) cloud computing environment. STEEP is herein evaluated 
at the field scale against four flux towers in the Caatinga, the largest 
continuous SDTF in the Americas. Additionally, the model was 
compared with SEBAL and two consolidated global ET products: MOD16 
(Mu et al., 2011; Running et al., 2017) and PMLv2 (Zhang et al., 2019). 

2. Methodology 

2.1. Study areas and respective data 

The study concerns the Brazilian Caatinga, located between the 
Equator and the Tropic of Capricorn (about 3 and 18◦ south), in the 
Brazilian semiarid region. It covers an area of about 850,000 km2 (Silva 
et al., 2017a; Andrade et al., 2021; Brazil MMA, 2021). The climate in 
the Caatinga is characterized by high air temperatures (around 

26–30◦C) and high potential evapotranspiration (1500–2000 mm/year) 
coupled with low annual rainfall (300–800 mm/year, normally 
concentrated in 3–6 months) with high intra- and inter-annual vari
ability in space and time, and a long dry season which sometimes lasts 
up to 11 months in some areas of Caatinga (Moro et al., 2016; Miranda 
et al., 2018; Paloschi et al., 2020). The Caatinga vegetation has at least 
thirteen physiognomies ranging from woods to sparse thorny shrubs, 
morphologically adapted to resist water stress and high air temperatures 
(Araújo et al., 2009; Silva et al., 2017a; Marques et al., 2020; Miranda 
et al., 2020), and it has been identified as one of the most biodiverse 
SDTF regions globally (Pennington et al., 2006; Santos et al., 2014; 
Koch et al., 2017). Still, the Caatinga and other SDTF are among the least 
studied ecoregions compared to tropical forests and savannas (Santos 
et al., 2012; Koch et al., 2017; Tomasella et al., 2018; Borges et al., 
2020). Only 1% of the Brazilian Caatinga area is legally protected (Koch 
et al., 2017). 

We used data from four sites located in the Caatinga (Fig. 1 and 
Table 1). The surrounding areas of each of our study sites — which 
exceeds these EC towers footprints — are homogeneously covered by 
Caatinga vegetation (Fig. S1). Located on crystalline terrain (Fig. 1a), 
these Caatinga sites have soils with highly variable properties, ranging 
from fertile (those with a clayey texture) to poor (those soils that are 
sandier). However, most soils of the SDTF are typically shallow and 
stony (i.e. Entisols, Alfisols, and Ultisols; WRB, 2006), retaining water 
only for a short period between rainfall events and after the rainy season 
(Moro et al., 2015; Queiroz et al., 2017). The wet and (dry) seasons from 
the sites Petrolina (PTN) are concentrated in Jan–Apr (May–Dec; Souza 
et al., 2015); Serra Negra do Norte (SNN) in Jan–May (June–Dec; 
Marques et al., 2020); Serra Talhada (SET) in Nov–Apr (May–Oct; Silva 
et al., 2017b) and Campina Grande (CGR) in Mar–July (Aug–Feb; Oli
veira et al., 2021). The climate of the four observation sites is semi-arid, 

Fig. 1. Location of flux tower observation sites in Caatinga. a) Geographical overview of the Caatinga (Moro et al., 2015), b) Köppen’s climate classification map: 
Tropical zone with dry summer (As), Tropical zone with dry winter (Aw), Dry zone semi-arid low latitude and altitude (Bsh), Humid subtropical zone without dry 
season and with hot summer (Cfa), Humid subtropical zone with dry winter and hot summer (Cwa), Humid subtropical zone with dry winter and temperate summer 
(Cwb), Humid subtropical zone with dry winter and short and cool summer (Cwc), Humid subtropical zone with dry summer and hot (Csa), according to Alvares 
et al. (2013) and c) Data availability on the observation sites after procedures to ensure their quality. 
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type BSh (Fig. 1b) according to the Köppen climate classification 
(Alvares et al., 2013). 

Eddy covariance data, covering several periods from 2011 to 2020 
(Fig. 1c), were used to evaluate the modelled ET and H. The four sites 
were instrumented with five flux towers equipped with three- 
dimensional ultrasonic anemometers (CSAT3, Campbell Scientific Inc., 
Logan, UT, USA in all the sites except CGR 2020) and open-path infrared 
gas analysers (LI-7500, LI-COR Inc., Lincoln, NE, USA, in the PTN site, or 
EC150, Campbell Scientific Inc., Logan, UT, USA, in the SET, SNN, and 
CGR 2014 sites). In the more recent experiment (CGR 2020), the flux 
tower was equipped with an IRGASON (Campbell Scientific Inc., Logan, 
UT, USA) that integrates the two sensors in just one instrument. ET data 
for the PTN, SNN, and SET sites have been previously described; they 
underwent standard procedures to ensure their quality and were pub
lished by Melo et al. (2021). Observations at the CGR site were collected 
through two micrometeorological towers, located in a dense Caatinga 
area within the Brazilian National Institute of Semiarid (INSA) experi
mental area, a 300 ha forest reserve with different stages of regenera
tion. The first tower (height of 7 m) was active between the years of 
2014 and 2017, as described in Oliveira et al. (2021). The second tower 
(height of 15 m) is part of the Caatinga Observatory (OCA) and includes 
an EC system that has been collecting data since 2020. The OCA is a 
laboratory maintained by the Federal University of Campina Grande and 
INSA. H data for the PTN, SNN and CGR sites have been obtained from 
the respective principal investigators, while data for the SET site have 
been obtained from the AmeriFlux network (Antonino, 2019). For the 
retrieval of λET and H, LoggerNet software (Campbell Scientific, Inc., 
Logan, UT, USA) was used in order to transform 10 Hz raw data into 
30 min binaries. Afterwards, EdiRe software (Campbell Scientific Inc., 
Logan, UT, USA) was used to process the high-frequency data, averaging 
every 30 min. The data from the EC flow towers in CGR have previously 
gone through standard procedures to ensure their quality. Detailed in
formation on data processing, quality control, and post-processing can 
be found in Campos et al. (2019) and Cabral et al. (2020). The raw data 
from the CGR flux tower were processed by Easy-flux data processing 
software (Campbell Scientific Inc., Logan, UT, USA). In addition, data 
for any day with rainfall greater than 0.5 mm were removed. The daily 
ET was calculated using the daily average λET. 

2.2. The Seasonal Tropical Ecosystem Energy Partitioning (STEEP) model 

SEB models have been applied in many parts of the world (Mohan 
et al., 2020a). The one-source SEB models that are most commonly 
found in the literature are SEBAL (Bastiaanssen et al., 1998), Surface 
Energy Balance System (SEBS; Su, 2002), Mapping EvapoTranspiration 

at high Resolution with Internal Calibration (METRIC; Allen et al., 
2007), and Operational Simplified Surface Energy Balance (SSEBop; 
Senay et al., 2013). As in other SEB models, STEEP performs the energy 
balance at the time of satellite overpass (instantaneous) to obtain λET as 
the surface energy balance residual. The computation of Rn and G, 
necessary to get λET, followed the procedures described in Ferreira et al. 
(2020) and Bastiaanssen et al. (2002), respectively, but with input data 
from the Moderate-Resolution Imaging Spectroradiometer (MODIS) 
sensor. H was calculated following the methods described in Table 2: 
using rah and dT, both traditionally applied in SEB models, but also 
focusing on peculiarities of SDTF that have never been considered in 
other SEB models. In this proposed version, rah was described according 
to Verhoef et al. (1997a) and Paul et al. (2013), which requires, among 
other parameters/variables, the momentum roughness length (z0m), the 
zero plane displacement height (d0), the dimensionless parameter kB− 1, 
and the atmospheric stability corrections (Paulson, 1970). z0m is 
influenced by a range of plant structural properties, e.g. vegetation 

Table 1 
List of EC-equipped flux tower observation sites in the study area.  

Sites State of Brazil Mean annual 
of rainfall 
(mm)1 

Site average 
elevation (m) 

Main tree species Location 
(Lon;Lat) 

Data 
availability 

Wet / Dry 
Seasons 

Main 
reference 

Petrolina 
(PTN) 

Pernambuco 428.6 395 Commiphora leptophloeos, Schinopsis 
brasiliensis, Mimosa tenuiflora, Cenostigma 
microphyllum, Sapium glandulosum 

− 40.3212; 
− 9.0465 

Jan–Dec 
2011 

Jan-Apr / 
May-Dec 

Souza et al. 
(2015) 

Serra Negra 
do Norte 
(SNN) 

Rio Grande do 
Norte 

629.5 205 Caesalpinia pyramidalis, Aspidosperma 
pyrifolium, Anadenanthera colubrina, 
Croton blanchetianus 

− 37.2514; 
− 6.5783 

Jan–Dec 
2014 

Jan-May / 
June-Dec 

Marques 
et al. (2020) 

Serra Talhada 
(SET) 

Pernambuco 648 465 Mimosa hostilis, Mimosa verrucosa, Croton 
sonderianus, Anadenthera macrocarpa, 
Spondias tuberosa 

− 38.3842; 
− 7.9682 

Jan–Dec 
2015 

Nov-Apr / 
May-Oct 

Silva et al. 
(2017b) 

Campina 
Grande 
(CGR) 

Paraíba 777 490 Croton blanchetianus, Mimosa 
ophthalmocentra, Poincianella pyramidalis, 
Allophylus quercifolius, Mimosa sp. 2 

− 35.9750; 
− 7.2798 

Jan–Dec 
2014 

Mar-July / 
Aug-Feb 

Oliveira 
et al. (2021) 

Campina 
Grande 
(CGR) 

Paraíba 777 490 Croton blanchetianus, Mimosa 
ophthalmocentra, Poincianella pyramidalis, 
Allophylus quercifolius, Mimosa sp. 2 

− 35.9763; 
− 7.2805 

Jan–Dec 
2020 

Mar-July / 
Aug-Feb 

This study 

1 Rainfall Data Sources: Brazilian National Institute of Meteorology (INMET) and Pernambuco State Agency for Water and Climate (APAC). 
2 Barbosa et al. (2020). 

Table 2 
References for the methods used in the STEEP and SEBAL models to obtain the 
sensible heat flux.  

Variable/Parameter STEEP SEBAL 
Aerodynamic resistance for heat 

transfer (rah) 
Verhoef et al., 
1997a;  
Paul et al., 
2013 

Bastiaanssen et al., 2002;  
Laipelt et al., 2021 

Roughness length for 
momentum transfer (z0m) 

Verhoef et al., 
1997b;  
Paul et al., 
2013,  
replacing LAI 

with PAI 

Bastiaanssen et al., 2002;  
Laipelt et al., 2021 

Zero plane displacement height 
(d0) 

Verhoef et al., 
1997b;  
Paul et al., 
2013 

– 

Plant Area Index (PAI) Miranda et al., 
2020 

– 

Parameter kB− 1 Su et al., 2001 uses z0h with constant value 
(0.1); Bastiaanssen et al., 
2002 

Correction of soil moisture by 
remote sensing in kB− 1 

Gokmen et al., 
2012 

– 

Calculation of the H and the 
remaining λET in endmembers 
pixels 

Allen et al., 
2007;  
Singh and 
Irmak, 2011;  
French et al., 
2015 

Calculation of the H in the 
hot/dry endmember only;  
Bastiaanssen et al., 2002  
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height, breadth and vegetation drag coefficients, and spacing (or den
sity). z0m is commonly computed as a function of Leaf Area Index (LAI; 
Verhoef et al., 1997b; Liu et al., 2021). However, most SDTF plants 
spend a substantial part of the year without leaves; under these condi
tions, z0m should be derived from information on dimensions of trunks, 
stems, and branches. Since LAI is only related to leaf cover quantity and 
variability, it cannot represent the woody plant structure without leaves 
(Miranda et al., 2020). Therefore, the Plant Area Index (PAI), which is 
the total above-ground plant area, i.e. leaves and woody structures, was 
used to represent plant structures in the computation of z0m and d0. 

To incorporate the conditions of water variability in the forest system 
in the calculation of sensible heat we applied the procedure described in 
Gokmen et al. (2012) that corrects the kB− 1 equation presented in Su 
et al. (2001), incorporating soil moisture obtained by remote sensing. 
The canopy conductance profiles are the link between soil moisture and 
sensible/latent heat flux. The source of sensible/latent heat moves 
vertically throughout the canopy as a function of plant water stress 
(Gokmen et al., 2012; Bonan et al., 2021), which affects heat roughness 
length, and, therefore, kB− 1 and rah. Thus, when there is a reduction in 
soil moisture, there is also a reduction in the value of rah and, conse
quently, an increase of H and a decrease in λET. Furthermore, to 
calculate dT, we used the linear relationship on LST, using the 
assumption of extreme contrast in terms of cover and soil wetness 
(hot/dry and cold/wet endmembers) to determine the linear relation
ship coefficients. However, in the hot/dry and cold/wet endmembers 
pixels, H was computed by the surface energy balance (Allen et al., 
2007), and the remaining λET was incorporated through the Priest
ley-Taylor (1972) equation and plant physiological constraints 
following the approach in Singh and Irmak (2011) and French et al. 
(2015). PAI and soil moisture time series used in our study can be seen in 
Fig. S2. The references for the methods and equations adopted to 
formulate the STEEP model can be found in Table 2 and Appendix A, 
respectively. For illustration purposes, Table 2 also shows the references 
for the methods for one of the most widely used RS SEB models, the 
SEBAL model. 

2.3. Algorithm implementation and processing 

We implemented STEEP on the Google Earth Engine (GEE) cloud 
computing environment (Gorelick et al., 2017) using the Python API 
(version 3.6). Statistical analyses to evaluate the performance of the 

models were also conducted in Python and implemented in the Jupyter 
programming environment. The Python package geemap (Wu, 2020) 
enabled the integration of Python with the GEE environment, and the 
hydrostats package (Roberts et al., 2018) was used for the statistical 
evaluation of the performance of the models. 

We designed the application of the model to take advantage of the 
data available on GEE (Table 3). The remote sensing datasets were 
derived from MODIS sensor products, the Shuttle Radar Topography 
Mission (SRTM; Farr et al., 2007), and the Global Forest Canopy Height 
product provided vegetation height (Potapov et al., 2021). The climate 
data necessary to run the model, i.e. wind speed, air temperature, 
relative humidity, shortwave radiation, and net thermal radiation at the 
surface, were sourced from the ERA5-Land reanalysis product (Muñoz 
Sabater, 2019). For data regarding soil moisture, we used the Global 
Land Data Assimilation System (GLDAS) product (Rodell et al., 2004). 
CHIRPS precipitation product (Funk et al., 2015) was used to estimate 
the daily rainfall amount at the sites evaluated. 

The presence of clouds or instrumental malfunctioning of orbital 
sensors can cause gaps in data. To reduce the loss of information due to 
missing data, we chose to use the MODIS MCD43A4 reflectance product. 
By combining reflectance data from MODIS sensors aboard the AQUA 
and TERRA satellites and modeling the anisotropic scattering charac
teristics using sixteen-day quality observations, the MCD43A4 product 
represents the daily dynamics of the Earth’s surface without missing 
data (Schaaf and Wang, 2015). Daily surface reflectance data from the 
MCD43A4 product were used to obtain the surface albedo and vegeta
tion indices (NDVI and PAI) needed to run STEEP. Thus, the surface 
albedo data and the vegetation indices show a low percentage of missing 
data. To compose the LST time series, we used data from MOD11A1, and 
to fill its missing data, a filter with the average value for a monthly 
window was applied. This procedure is similar to the method proposed 
by Zhao et al. (2005) and it is also used by the MOD16 algorithm to 
generate the continuous global ET (Mu et al., 2011). 

Following the approach in comparable studies, STEEP algorithm 
processing was conducted with automatic selection of endmembers 
pixels (Bhattarai et al., 2017; Silva et al., 2019; Laipelt et al., 2021). Like 
Silva et al. (2019), we used the biophysical variables NDVI, surface al
bedo and LST to automate selection of the endmembers, but we applied 
different criteria. For the hot/dry endmember selection, the first step 
consisted of selecting those pixels whose surface albedo values are be
tween the 50 and 75% quantiles, and with NDVI values greater than 0.1 

Table 3 
Description of the datasets available on the GEE platform used in the research.  

Product GEE ID Bands/variables Time coverage Spatial 
resolution 

Temporal 
resolution 

MCD43A4.006 MODIS/006/MCD43A4 B1–B7 Feb 
2000–present 

0.5 km 1 day 

MOD09GA.006 MODIS/006/MOD09GA SolarZenith Feb 
2000–present 

1 km 1 day 

MOD11A1.006 MODIS/006/MOD11A1 LST_Day_1 km; Emis_31, Emis_32 Mar 
2000–present 

1 km 1 day 

SRTM USGS/SRTMGL1_003 Elevation Feb 2000 0.03 km – 
ERA5-Land ECMWF/ERA5_LAND/HOURLY dewpoint_temperature_2 m, temperature_2 m, 

u_component_of_wind_10, v_component_of_wind_10 m, 
surface_net_solar_radiation_hourly, 
surface_net_thermal_radiation_hourly 

Jan 
1981–present 

0.1◦ 1 h 

GLDAS NASA/GLDAS/V021/NOAH/ 
G025/T3H 

SoilMoi0_10cm_inst Jan 
2000–present 

0.25◦ 3 h 

Global Forest 
Canopy Height, 
2019 

users/potapovpeter/GEDI_V27 – Apr 2019 0.03 km – 

CHIRPS UCSB-CHG/CHIRPS/DAILY Precipitation Jan 
1981–present 

0.05◦ 1 day 

MOD16A2.006 MODIS/006/MOD16A2 ET Jan 
2001–present 

0.5 km 8 days 

PML_V2 projects/pml_evapotranspiration/ 
PML/OUTPUT/ 
PML_V2_8day_v016 

Es, Ec, Ei Feb 
2000–present 

0.5 km 8 days  
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and less than the 15% quantile. After this first selection, a refinement is 
applied by selecting only those pixels from this first set that have LST 
values between the 85 and 97% quantiles. Using the set of pixels that 
met these criteria, the median values of Rn, G, LST and rah were calcu
lated to establish a single value for each variable and describe the 
characteristics of the hot pixel. We applied a similar procedure to select 
the cold/wet endmember but with different limits (Table 4). The pro
cedure for finding endmembers was conducted daily. To execute the 
model and conduct the selection of endmembers, we used an area of 
interest (AOI), also known as domain size. AOI was defined as a square 
area with 1000-km sides within the Caatinga domain and centered on 
the tower coordinates of each site. Cheng et al. (2021), for example, 
applied the SEBAL using MODIS data in China and used an AOI of 
1200-km x 1200-km. 

2.4. Analysis of the algorithms’ performance 

We used SEBAL as a reference RS SEB model for comparison with 
STEEP. SEBAL is one of the most applied SEB models since the algorithm 
uses a minimal number of in situ measurements compared to similar 
models, e.g. METRIC and SSEBop, and is considered a suitable choice for 
evapotranspiration estimates over cropped areas and in the context of 
water resource management (Kayser et al., 2022). Applications with 
SEBAL have been conducted in the Caatinga as in the studies of Teixeira 
et al. (2009), Santos et al. (2020), Costa et al. (2021), and Lima et al. 
(2021). Implementations of the SEBAL algorithm are popular on several 
computing platforms, e.g. GRASS-Python (Lima et al., 2021); Google 
Earth Engine (Laipelt et al., 2021); Python (Mhawej et al., 2020), 
following the formulations described in Bastiaanssen et al. (1998) and 
Bastiaanssen et al. (2002). The SEBAL version implemented in this work 
followed those presented by Bastiaanssen et al. (2002), Costa et al. 
(2021) and Laipelt et al. (2021). The remote sensing datasets and end
members pixels selection for SEBAL were the same as described in 
STEEP. 

ET and H estimates from STEEP and SEBAL were evaluated against 
the eddy covariance measurements of the corresponding tower. Here, 
the modelled values were extracted for the pixel representing the EC 
tower for each observation site. The footprint fetches for PTN, SET, SNN 
is less than 500 m (Silva et al., 2017b; Campos et al., 2019; Santos et al., 
2020). We assume a similar footprint for CGR due to its similarity in 
terms of wind characteristics and terrain slope compared to the other 
sites. Moreover, the surrounding areas of each of our study sites (Fig. S1) 
— which exceeds these EC towers footprints — are homogeneously 
covered by Caatinga vegetation. We evaluated daily ET values, and 
instantaneous hourly H values more specifically with the mod
elled/measured H value at 11:00 am local time (GMT-3), considering 
this is the closest time to the satellite’s overpass. Additionally, the STEEP 
model was compared with two consolidated global ET products avail
able on GEE: MODIS Global Terrestrial Evapotranspiration A2 version 6 
(MOD16; Mu et al., 2011; Running et al., 2017) and 
Penman-Monteith-Leuning model version 2 global evaporation (PMLv2; 
Zhang et al., 2019); both products have a pixel resolution of 500 m 
(Table 3). The algorithm used in MOD16 is based on the 

Penman-Monteith equation and driven by MODIS remote sensing data 
with Modern-Era Retrospective analysis for Research and Applications 
(MERRA; Mu et al., 2011). In MOD16 ET is the sum of soil evaporation 
(Es), canopy transpiration (Tc) and wet-canopy evaporation (Ec) and is 
provided as eight-day cumulative values. More details about MOD16 can 
be found in Mu et al. (2011) and Running et al. (2017). The global 
PMLv2 product involves a biophysical model based on the 
Penman-Monteith-Leuning equation which also uses MODIS remote 
sensing data, but with meteorological reanalysis data from GLDAS as 
model inputs. As in MOD16, ET in PMLv2 is also the sum of Es, Tc and Ec 
but is provided as eight-day average values. To make MOD16 and PMLv2 
values compatible, ET of PMLv2 was multiplied by eight. Details about 
PMLv2 can be found in Gan et al. (2018) and Zhang et al. (2019). We 
accumulated the daily ET measured at the observation sites, i.e. derived 
from EC data, and ET modelled with STEEP for the same eight-day time 
periods to make them compatible with the temporal resolution of the 
MOD16 and PMLv2 datasets. The average of the measured daily values 
over each eight-day time period (even if there were missing values 
within this period) was multiplied by eight to calculate the observed 
8-day ET. To match the time steps of STEEP and MOD16/PMLv2 ET 
values, the 8-day average of the evaporative fraction (EF) was multiplied 
by the daily net radiation over those 8 days, assuming that EF can be 
considered constant in each of these periods. Then the ET was summed 
over the 8-day interval. Finally, we also compared the modelled ET (by 
STEEP and the two global products) with the observed ET, only in the 
8-day periods when no field-observed data was missing. However, with 
this criterion the number of observations dropped dramatically. 

The STEEP and SEBAL models and global ET products were evalu
ated with five performance metrics (Table 5). A combination of per
formance metrics is often used to assess the overall performance of 
models because a single metric provides only a projection of a certain 
aspect of the error characteristics (Chai and Draxler, 2014). Root mean 
square error (RMSE) is commonly used to express the accuracy of the 
results with the advantage that it presents error values in the same units 
of the variable analysed; optimal values are close to zero (Hallak and 
Pereira Filho, 2011). Coefficient of determination (R2) represents the 
quality of the linear trend between observed and simulated data and 
ranges from 0 to 1; high values indicate better model performance. 
Nash–Sutcliffe efficiency (NSE) indicates the accuracy of the model 
output compared to the average of the referred data (NSE = 1 is the 
optimal value; Nash and Sutcliffe, 1970). Concordance correlation co
efficient (ρc) is a measure that evaluates how well bivariate data falls on 
the 1:1 line. ρc measures both precision and accuracy. It ranges from − 1 
to +1 similar to Pearson’s correlation coefficient, with perfect agree
ment at +1 (Lin, 1989; Liao and Lewis, 2000; Akoglu, 2018). Percentage 
bias (PBIAS) measures the average relative difference between observed 
and estimated values, with an optimal value of 0 (Gupta et al., 1999). 
Additionally, we evaluate STEEP’s model structure by extracting 
model’s performance metrics after excluding it from its main imple
mentations individually (Table 2) and by two-by-two combinations of 
z0m, rah and rλET. We run the control version of the SEB model, i.e. 
SEBAL in our case, while incorporating one or two improvements in the 
model and keeping the remaining parts of the algorithm the same as the 
reference SEB model. 

3. Results and discussion 

3.1. Comparison of STEEP and SEBAL models results with observed (EC) 
values 

The performance statistics of daily ET by STEEP and SEBAL in wet 
and dry seasons for the evaluated sites are shown in Fig. 2. In general, 
STEEP exhibited a better performance than SEBAL. Although the better 
statistical metrics of STEEP were in the dry season, in the wet season, 
they were also superior compared to SEBAL. Specifically, in the dry 
season, STEEP exhibited a RMSE between 0.6 and 1.06 mm/day, while 

Table 4 
Methodology used for the selection of endmembers pixels.   

Endmembers  
Hot/dry pixel Cold/wet pixel 

Step 
1 

Q50% < surface albedo < Q75% and 
0.10 < NDVI < Q15% 

Q25% < surface albedo < Q50% 
and NDVI > Q97% 

Step 
2 

of the pixels of the 1st Step, select 
pixels with Q85% < LST < Q97% 

of the pixels of the 1st Step, select 
pixels with LST < Q20% 

Step 
3 

Of the set of pixels that met the previous steps, the median values of Rn, G, 
LST and rah were calculated to establish a single value for each variable and 
describe the characteristics of endmembers 

Q = quantile. 

U.A. Bezerra et al.                                                                                                                                                                                                                              



Agricultural and Forest Meteorology 333 (2023) 109408

7

SEBAL this was between 1.06 and 2.24 mm/day. The maximum value of 
R2 in STEEP was 0.62 (sites PTN and SNN), whereas SEBAL achieved 
only 0.33. The NSE metric was the worst among the five analysed in 
SEBAL: values lower than − 7.5 occurred in three of the five sites. 
Although in STEEP, PTN and SNN sites NSE had values higher than 
0 (0.55 and 0.25, respectively) the other sites also had negative values, 
reaching up to − 2.5. In terms of ρc, values ranged from 0.09 to 0.77 in 
STEEP and from − 0.04 to 0.41 in SEBAL. It is also possible to see the 
reduction that STEEP has brought to ET modeling in terms of PBIAS 
when compared to SEBAL. 

Globally, without discriminating between wet and dry seasons, 
STEEP exhibited better statistical performance than SEBAL at all the 
evaluated sites (Fig. 3). While STEEP exhibited a RMSE between 0.75 
and 0.94 mm/day, the RMSE for SEBAL was between 1.08 and 1.75 mm/ 
day. In terms of R2, the values were between 0.24 to 0.69 for STEEP, and 
were below 0.2 for SEBAL for all sites except in SNN (0.55). Similarly, 
NSE and ρc values were higher for STEEP compared to SEBAL. For 
STEEP, all sites had NSE and ρc values above − 0.42 and 0.41, respec
tively, whereas all sites except SNN had values below these limits for 
SEBAL. Both models overestimated ET (PBIAS > 0), with the exception 
of the STEEP estimates for the PTN site. The highest overestimation by 
the STEEP model was less than 60%, whereas in SEBAL it was greater 
than 140%. 

SEBAL metrics concerning the modelled ET were similar to those 
found in other studies. Laipelt et al. (2021) found R2 ranging from 0.18 
to 0.87 when applying SEBAL and comparing it with data from ten EC 
towers located in different Brazilian biomes (Amazon, Cerrado, Pan
tanal, and Pampa). Cheng et al. (2021) obtained R2 of 0.53–0.77 and 
RMSE of 0.89–1.02 mm/day when comparing estimates from SEBAL and 
EC towers on different land covers in China. Costa et al. (2021), when 

applying SEBAL in the Caatinga, found R2 and NSE values of 0.57 and 
0.36, respectively. Santos et al. (2020) modelled ET with SEBAL at the 
SNN site for the 2014–2016 period and obtained R2 and RMSE values of 
0.28 and 1.43 mm/day, respectively. For this site, we obtained R2 and 
RMSE of 0.55 and 1.08 mm/day, respectively, for the year 2014 using 
SEBAL. 

STEEP exhibited a greater seasonal accuracy compared to SEBAL 
(Fig. 3), as evidenced by the goodness-of-fit between simulated and 
observed values expressed by the NSE indicator. STEEP estimates fol
lowed the same temporal evolution as the observed values. STEEP 
satisfactorily captured both minimum and maximum ET values, 
including after rainfall events, this is particularly evident in Fig. 3a, 
where the two observed ET peaks in late 2011 — between DOY 300 and 
360 — in the PTN site were captured nicely by STEEP. This improved 
performance can be explained because soil moisture is incorporated in 
the STEEP algorithm. In semi-arid regions and particularly in the SDTF, 
besides the availability of energy, evapotranspiration is highly depen
dent on the soil–water availability (Lima et al., 2012; Carvalho et al., 
2018; Mutti et al., 2019; Paloschi et al., 2020). In rainy months, low 
daily ET rates are often observed due to the reduced levels of incoming 
radiation caused by high cloud cover (Mutti et al., 2019; Paloschi et al., 
2020). Towards the end of the wet period, when the available energy 
increases, the daily ET values also increase as a result of the high soil 
water availability from previous precipitation events (Allen et al., 2011; 
Marques et al., 2020). In the transition period from the rainy to the dry 
season, the leaves do not fall immediately (see Table 1, main tree spe
cies). Instead, leaf-shedding depends on the environmental conditions in 
each location, including the rainy season duration, and species compo
sition (Lima and Rodal, 2010; Lima et al., 2012; Miranda et al., 2020; 
Paloschi et al., 2020; Queiroz et al., 2020; Medeiros et al., 2022). The 

Table 5 
Performance metrics used to evaluate ET and H in this study.  

Performance metric Equation Range (Perfect value) 
Root mean square error (RMSE) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Mi − Oi)
2

N

√ [0, +∞ [(0) 

Coefficient of determination (R2) 
R2 =

[
∑N

i=1(Oi − O)(Mi − M)]
2

∑N
i=1(Oi − O)

2⋅
∑N

i=1(Mi − M)
2 

[0, 1] (1) 

Nash–Sutcliffe efficiency (NSE) 
NSE = 1 −

∑N
i=1(Mi − Oi)

2

∑N
i=1(Oi − O)

2 

]-∞, 1] (1) 

Concordance correlation coefficient (ρc) 
ρc =

2
∑N

i=1(Oi − O)(Mi − M)
∑N

i=1(Oi − O)
2
+
∑N

i=1(Mi − M)
2
+ (N − 1)(O − M)

2 

[− 1, 1] (1) 

Percentage bias (PBIAS) 
PBIAS =

∑N
i=1(Mi − Oi)⋅100
∑N

i=1Oi 

]-∞, +∞ [(0) 

where: N sample size; O observed value; M modelled value; O observed mean; M modelled mean.  

Fig. 2. Results of the performance statistics of daily ET in wet and dry seasons for evaluated sites.  
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Fig. 3. Observed and modelled daily evapotranspiration (ET, mm/day) for the different experimental sites: a) and b) PTN 2011, c) and d) SNN 2014, e) and f) SET 
2015, g) and h) CGR 2014, i) and j) CGR 2020. The black lines represent observed ET; the red crosses and points are STEEP and SEBAL estimates, respectively; the 
blue bars represent CHIRPS daily rainfall; the gray region represents daily net radiation from ERA5-land. 
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remaining water available in the soil or previously accumulated in plant 
tissues is sufficient for the Caatinga vegetation to maintain its leaves, for 
short periods, at levels similar to the rainy season (Barbosa et al., 2006; 
Mutti et al., 2019). However, in the dry season, when soil moisture 
reaches its lowest levels, the Caatinga vegetation enters a state of 
dormancy that is accompanied by leaf drop and a drastic reduction of 
photosynthetic activity (and hence of transpiration) as a strategy to cope 
with the lack of available soil moisture (Dombroski et al., 2011; Paloschi 
et al., 2020). This resilience mechanism is typical of xerophytic and/or 
deciduous species such as those found in the Caatinga (Lima et al., 2012; 
Mutti et al., 2019; Paloschi et al., 2020), and explains the low rates of ET 
in the dry season. In contrast, in SEBAL, which does not consider water 
availability, it was observed that the daily ET followed the course of the 
daily net radiation throughout the year, especially in the dry period of 
each of the experimental sites. This is in agreement with the results of 
Kayser et al. (2022), who pointed out that estimates with SEBAL can be 
seasonally accurate in locations where the main driver of ET is the 
available energy. Our results highlight that SEB models such as SEBAL, 
which are formulated to be mainly dependent on energy availability and 
do not consider soil and plant water availability, may not satisfactorily 
represent ET in semi-arid vegetation such as that found in the SDTF 
(Gokmen et al., 2012; Paul et al., 2014; Melo et al., 2021). 

The core of the STEEP and SEBAL algorithms is based on finding λET 
as the residual of the energy balance; however, they differ with regards 
to the approach used to calculate H. In the STEEP model, the seasonal 
variation of H fitted the observed values of the instantaneous mea
surements at 11:00 am (local time) better than SEBAL, for all the sites 
(Fig. 4). Our results show that an improvement in H leads to a corre
spondent in ET estimates. This is contrary to the findings of Faivre et al. 
(2017), who used the same formulation for kB− 1 applied in our study, 
but included four different methods to compute z0m. While STEEP es
timates of H exhibited ρc values over 0.5 for three of the five sites, SEBAL 
H estimates exhibited ρc values below 0.5 for all sites. When wet and dry 
seasons data are analysed separately (Fig. 5), the same trend is observed 
in the results: in general, the STEEP model presents better statistical 
metrics than SEBAL. 

Evaluation of the STEEP and SEBAL daily ET and instantaneous H for 
all experimental sites (Fig. 6) indicates that both models lack a high 
performance for H estimates, although the use of STEEP resulted in 
better statistical measures than when SEBAL was employed (Fig. 6b). 
This substantiates previous findings (Gokmen et al., 2012; Paul et al., 
2014; Trebs et al., 2021), that have shown the tendency of underesti
mation (overestimation) of H (ET) at water-limited sites. It can be seen 
that the overestimation of H by the STEEP model, compared to SEBAL, 
produced modelled ET values that were closer to the EC measurements 
(see Fig. 3 and 4). We ascribe the poor performance of H in the models 
relative to observed data to the continuous H oscillations throughout the 
day (Campos et al., 2019; Lima et al., 2021). As we compare an 
instantaneous H estimate (STEEP or SEBAL) to the 30-min H average 
measurement (EC), it is expected that modelled H performs worse than 
daily ET for the same site and period. Furthermore, for sites with fewer 
observations of H (SET 2015 and CGR 2020), especially in the dry sea
son, the metrics showed that STEEP did not perform as well, for each 
season, as other sites with more data available. Still, these limited data 
were sufficient to show that STEEP outperformed SEBAL in estimating 
H. 

We attribute the better performance of STEEP over SEBAL for the 
Brazilian Caatinga to at least three reasons, shown in order of impact of 
model implementation on its performance (Fig. 7 and Table S1). First, by 
quantifying the remaining λET in the endmembers pixels through the 
Priestley-Taylor equation, a more reliable estimate of H in the end
members pixels can be obtained, as was also evidenced by Singh and 
Irmak (2011). This process is critical for the subsequent numerical 
calculation of H in SEB models that use dT, as its accuracy is closely 
related to quantifying the energy balance at the hot and cold endmem
bers (Trezza, 2006; Allen et al., 2007; Singh and Irmak, 2011; Singh 

et al., 2012). Secondly, roughness characteristics near the surface where 
the heat fluxes originate are parameterised by z0m, which depends on 
several factors, such as wind direction, height and type of the vegetation 
cover (Kustas et al., 1989b). Estimation of z0m only with an exponential 
relationship, as a function of vegetation indices, may be an over
simplification (Kustas et al., 1989a; Paul et al., 2013). In our study, z0m 
and d0 are calculated with the equations and coefficients proposed in 
Raupach (1994) and Verhoef et al. (1997b), and using PAI because this 
index better represents the intra-annual phenological changes in the 
Caatinga (Miranda et al., 2020). This procedure considers the charac
teristics of SDTF, such as seasonality of phenology and vegetation 
height, that considerably affect the quantification of turbulent transfer 
(Liu et al., 2021). Third, our study uses the equation described in Ver
hoef et al. (1997a) and Paul et al. (2013) to estimate rah, which con
siders the differences between heat and momentum transfer, unlike the 
original equation employed in other SEB models e.g. SEBAL or METRIC 
that only considers z0m and sets z0h = 0.1 when computing this resis
tance. Furthermore, we account for the kB− 1 parameter that varies in 
space and time and incorporates the soil moisture content obtained by 
RS (Su et al., 2001; Gokmen et al., 2012). ET estimation is best repre
sented with a spatially varying kB− 1 values, as pointed out by the studies 
of Gokmen et al. (2012) and Paul et al. (2014). Long et al. (2011) report 
that the introduction of these fixed values (z0h or kB− 1) has a significant 
impact on the magnitudes of the estimates of H. Furthermore, Mallick 
et al. (2018) and Trebs et al. (2021) indicate that the parameterization of 
rah can influence the estimation of ET, especially in SEB models that are 
largely dependent on rah. Our results show that including just one or two 
of the refinements had only partial performance gains (Fig. 7 and 
Table S1). In contrast, all the proposed STEEP improvements when 
implemented together resulted in the best performance metrics for all 
sites. 

3.2. Comparison of STEEP model estimates with global 
evapotranspiration products 

The comparison of ET estimates by STEEP, MOD16 and PMLv2 with 
the observed values at the different sites (Fig. 8) reveals that the ET 
estimates by STEEP and global products adequately followed the sea
sonality of the values, with a better fit for STEEP and MOD16. In general, 
the evaluation at the different sites shows that the RMSE of STEEP was 
not higher than 6.45 mm/8 days, while the ET products’ maximum 
RMSE was close to 15 mm/8 days. It is noted that the lowest RMSE value 
found (4.11 mm/8 days) was for MOD16 at the SET site. Regarding R2 

values, 80% of the evaluations with STEEP were equal to or greater than 
0.50. For MOD16, 60% of the R2 values were equal to or greater than 
0.70, while for PMLv2, no site had R2 values that exceeded 0.55. The 
best NSE value produced by STEEP was 0.77, while with MOD16, it was 
0.70, both at the SNN site, while PMLv2 did not exceed 0.39 (PTN site). 
Regarding ρc, the percentages of ET evaluations that obtained values 
equal to or greater than 0.70 were 60% for STEEP and MOD16, and only 
20% for PMLv2 (site PTN). The overestimations (PBIAS) with STEEP 
were not higher than 50%, and not higher than 95% with MOD16. For 
PMLv2 the overestimations did not exceed 80%, except for the SET site 
that obtained a PBIAS approx. 160%. We highlight the good perfor
mance of MOD16 for the SET, SNN, and especially the PTN sites, with 
very good performance metrics and seasonal behavior, capturing ET 
values in dry periods very well. The evaluation results of STEEP, MOD16 
and PMLv2 for all observation sites combined are shown in Fig. 9. 
Noteworthy is the better performance of STEEP over MOD16 and 
PMLv2, with RMSE of < 6 mm/8 days, R2 and NSE greater than or close 
to 0.60, ρc of > 0.75 and an average overestimation < 12%. Analysis 
with the dataset considering only the 8-day time periods without 
missing field-observed data, i.e. periods with valid ET measurements 
during eight consecutive days (Fig. S3) did not change the results 
overall, confirming STEEP’s dominance compared to the two standard 
products evaluated. 
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Fig. 4. Observed and modelled instantaneous sensible heat flux (H, at 11:00 am, W/m2) for the different experimental sites: a), b) and c) PTN 2011, d), e) and f) SNN 
2014, g), h) and i) SET 2015, j), k) and l) CGR 2014, m), n) and o) CGR 2020. The blue line represents the observed values; the red crosses and gray points correspond 
to the STEEP and SEBAL estimates, respectively. The black line is the 1:1 line. 
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The explanation of the differences between STEEP and the MOD16 
and PMLv2 products is two-fold. Firstly, the way ET is obtained differs 
between STEEP and the other products. While STEEP and other SEB 
single-source models estimate ET as a combined single process, i.e. soil 
evaporation and transpiration estimates are provided as a lumped sum 
(Sahnoun et al., 2021), and interception loss is not taken into account, 
MOD16 and PMLv2 discriminate the ET components, i.e. soil evapora
tion, transpiration, and wet canopy evaporation (Mu et al., 2011; Zhang 
et al., 2019). With this in mind it is remarkable that STEEP performs 
better than the other, widely used, multiple-source ET products. Sec
ondly, the input data sets and their uses are different. The driving 
meteorological data for STEEP are from ERA5-Land, while in MOD16, 
they are from MERRA and in PMLv2 are provided by GLDAS (Mu et al., 
2011; Zhang et al., 2019). In addition, the meteorological elements used 
are different among the ET products. MOD16 requires air temperature, 

atmospheric pressure, relative humidity, and downward shortwave ra
diation. In addition to these elements, PMLv2 also requires precipita
tion, downward longwave radiation, and wind speed (Mu et al., 2011; 
Zhang et al., 2019; Yin et al., 2020; Chen et al., 2022). Although both ET 
products use the same land cover data (MOD12Q1), only MOD16 in
tegrates it into its algorithm. In MOD16, the land cover type defines 
biome delimitation for the characterization of leaf stomatal conduc
tance, vapor pressure deficit (VPD) and other related factors, while 
PMLv2 only uses land cover to construct a mask of the land area (Chen 
et al., 2022). The sources and use of LAI in these two products are also 
different. LAI is used to increase leaf conductance in MOD16, while it is 
used to divide the total available energy into canopy uptake and soil 
uptake in PMLv2 (Mu et al., 2011; Zhang et al., 2019; Chen et al., 2022). 
Although MOD16 uses EC data from 46 distributed sites for validation 
(Mu et al., 2011) and PMLv2 uses EC data from 95 distributed sites and 

Fig. 5. Results of the performance statistics of instantaneous sensible heat flux (H, at 11:00 am, W/m2) in wet and dry seasons, for the evaluated sites.  

Fig. 6. Evaluation of observed and modelled: (a) daily evapotranspiration (ET, mm/day) and b) instantaneous sensible heat flux (H, at 11:00 am, W/m2) for all 
experimental sites. STEEP (red crosses) and SEBAL (black points). The black line is the 1:1 line; the cyan (black) dashed line is the fitted linear regression between 
observed and STEEP (SEBAL) model values. 
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ten plant functional types for calibration (Zhang et al., 2019; Yin et al., 
2020), none of the products had observation sites in SDTF. 

The uncertainties associated with field measurements of ET can also 
influence the evaluation of the model products. It is generally accepted 
that EC flux towers provide reliable local, i.e. for areas of relatively 
limited spatial extensions, ca. 10 km2, ET measurements (Mu et al., 
2011; Chu et al., 2021; Salazar-Martínez et al., 2022). However, 
generally flux tower data have a lack of energy balance closure, that is 
the difference between net radiation and ground heat flux is sometimes 
greater than the sum of the turbulent latent and sensible heat fluxes, an 
error that can be in the 10–30% range (Wilson et al., 2002; Foken, 2008; 
Allen et al., 2011). This gap can result from instrument errors, weather 
and surface conditions, e.g. those that result in advection, and gap-filling 
methods (Mu et al., 2011). In addition, the complex and heterogeneous 
canopy structure, the stochastic nature of turbulence (Hollinger and 
Richardson, 2005) and adverse weather conditions, e.g. rainy and 
stormy days, tower sensors recording abnormal values, can affect ET 
measurements obtained by EC systems (Ramoelo et al., 2014). 

3.3. Sources of error and further research for STEEP 

In its current configuration, STEEP has some limitations that should 
be noted. Meteorological reanalysis provides only large-scale averages 
and can misrepresent local meteorological conditions; hence, it suffers 
from biases, especially over heterogeneous surfaces (Rasp et al., 2018). 
However, despite moderate accuracy and biases at regional scales, 
ground-based assimilation and reanalysis data have become important 
sources of meteorological inputs for ET estimates (Mu et al., 2011; 
Zhang et al., 2019; Allam et al., 2021; Senay et al., 2022). Laipelt et al. 
(2020) and Kayser et al. (2022) showed that global reanalysis data when 
used as meteorological inputs had modest effects only on the accuracy of 
SEBAL for estimating ET. In our study, ERA5-Land exhibited relatively 
high and satisfactory agreement with micrometeorological data 
measured at each site (Fig. S4). Also, although gap-filling was used in the 
present study to improve the availability of LST data, this procedure 
should be used with caution. In addition, care should be taken when 
using the MCD43A4 reflectance product, because in its composition 
there is also gap-filling. For example, on some cloudy days, the estimates 
of vegetation indices, surface albedo, and LST may have introduced 
inaccuracies in the STEEP (and in SEBAL) model calculation process due 
to these gap-filling methods. Regarding the selection of endmembers 
pixels, although the temporal evolution of the selected pixels in this 

study seems plausible, their representativeness of the actual conditions 
may be debatable, especially considering the considerable extent of the 
AOI. The computational capacity and the effectiveness of GEE for 
running SEB models should be commended. Although other studies have 
demonstrated GEE’s strength (Laipelt et al., 2021; Jaafar et al., 2022; 
Senay et al., 2022), this platform has some limitations when it comes to 
the number of iterations, e.g. a convergence threshold cannot be set to 
stop the within-loop iterations of H calculations; instead a fixed number 
of iterations needs to be defined. Still, the availability of the several 
necessary datasets within one platform greatly facilitates the run of 
STEEP and other SEB models. 

One of the main focuses of this study is to provide a one-source model 
capable of representing ET in environments that are mainly governed by 
soil–water availability, such as those represented by SDTF, in a parsi
monious way. Based on our findings we deem this main aim to be ach
ieved due to the relative simplicity of the STEEP model and its low data 
demand. The improved performance of STEEP was the result of 
improvement of existing and physically meaningful parameters (z0m 
and kB− 1), rather than by introducing additional empirical parameters, 
thereby satisfying the principle of equifinality (see Beven and Freer, 
2001). To explore further the potential and accuracy of STEEP, more 
research is needed to analyze the impact that the improved H approach 
has on ET of different land covers at longer time scales. Despite the 
promising overall results, additional efforts are required on modeling H 
in SDTF regions. Although we have shown that STEEP outperforms other 
models in simulating either H or ET, we acknowledge that there is still 
room for model improvement. Given that the STEEP model was 
formulated to be a calibration-free model, it may be possible to improve 
H estimates by, for example, optimizing coefficients associated to soil 
moisture (see Eq A.12) and applying dynamic values to αpt (see Eq A.25) 
varying seasonally. Another potential improvement for instantaneous H 
estimates can be achieved by accounting for biomass heat storage (BHS; 
Swenson et al., 2019) in STEEP. Meier et al. (2019) have shown that 
considering BHS can enable land surface models to capture the diurnal 
asymmetry of the temperature impact on energy fluxes and, conse
quently, provide improved sub-hourly H. Improving the quantification 
of regional ET via RS-based SEB models has a great potential to provide a 
more accurate estimate of the energy and water fluxes in SDTF regions, 
and will contribute to a better understanding of the water cycle, its uses, 
and the interrelationships with ecosystem functioning. 

Fig. 7. Change of the concordance correlation coefficient (ρc) by the exclusion/modification of one or two parameters/variables implemented in the STEEP model, in 
the wet and dry seasons: scale factor soil moisture correction (SF), the parameter kB− 1, the aerodynamic resistance for heat transfer (rah), PAI replace with LAI 
(determined by two different methods), the roughness length for momentum transport (z0m) and the residual latent heat flux in the end members pixels (rλET). 
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Fig. 8. Temporal evolution of ET from STEEP, MOD16 and PMLv2 for the different observation sites, and their individual performance statistics. a), b) and c) PTN 
2011; d), e) and f) SNN 2014; g) h) and i) SET 2015; j), k) and l) CGR 2014; m), n) and o) CGR 2020. Black lines correspond to observed ET while data points refer to 
estimates by the STEEP model (red crosses), MOD16 (blue diamonds) and PMLv2 (green squares) products. 
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4. Conclusions 

Our work developed a calibration-free model (STEEP) with an 
improved approach for estimating the latent and sensible heat fluxes by 
remote sensing for SDTF. In summary, the main conclusions are:  

• The estimates of H by STEEP allowed ET estimates to be closer to the 
observed field values than those obtained by SEBAL. Based on all the 
performance metrics used to analyze the models, STEEP was superior 
to SEBAL. STEEP showed RMSE less than 1 mm/day, R2 between 
0.24 and 0.69, NSE between − 0.17 and 0.65, ρc between 0.41 and 
0.80 and PBIAS between − 17% to 54%. Also noteworthy is how well 
STEEP captured the seasonal course of observed ET. 

• Compared with ET data from the global MOD16 and PMLv2 prod
ucts, the STEEP model simulated a similar but generally superior 
seasonal evolution and its performance metrics were also better. 
Considering all observation sites simultaneously, at the eight-day 
scale, STEEP showed superior performance with RMSE less than 6 
mm/8 days, R2 and NSE equal to or greater than 0.60, ρc greater than 
0.75, and an overestimation of < 12%. 

Thus, we conclude that STEEP, a one-source model that incorporated 
the seasonality of the aerodynamic and surface variables, was well- 
heeled in representing ET in environments that are mainly governed 
by soil–water availability. All the same, there is a need to evaluate the 
newly developed STEEP model performance for different land covers, 
climate, and for longer time series than those considered during the 
modeling process in this study. 

CRediT authorship contribution statement 

Ulisses A. Bezerra: Conceptualization, Methodology, Software, 
Validation, Formal analysis, Investigation, Data curation, Writing – 
original draft, Writing – review & editing, Visualization, Supervision. 
John Cunha: Conceptualization, Methodology, Software, Formal anal
ysis, Investigation, Data curation, Writing – original draft, Writing – 

review & editing, Supervision, Project administration. Fernanda Val
ente: Conceptualization, Methodology, Formal analysis, Writing – 
original draft, Writing – review & editing. Rodolfo L.B. Nóbrega: 
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Appendix A. Equations adopted to formulate the STEEP model 

Latent heat flux (λET) was modeled using Eq. (A.1): 

λET = Rn − G − H (A.1)  

where Rn is net radiation, G is soil heat flux, and H is sensible heat flux. All variables are expressed in energy units (e.g., W/m2). 
Net radiation (Rn) was modeled based on the radiation budget indicated by Allen et al. (2007) and Ferreira et al. (2020) by Eq. (A.2): 

Rn = RS↓ × (1 − α) + εS × RL↓ − RL↑ (A.2)  

where RS↓ is incident shortwave radiation (W/m2) estimated following Allen et al. (2007), α is surface albedo (dimensionless), estimated following 
Trezza et al. (2013), RL↓ is longwave radiation from the atmosphere (W/m2) estimated following Ferreira et al. (2020) with atmospheric emissivity 
from Duarte et al. (2006); RL↑ is emitted longwave radiation (W/m2) following Ferreira et al. (2020) with εS the surface emissivity (dimensionless), 
estimated following Long et al. (2010). 

Soil heat flux (G), expressed as a ratio of net radiation, was estimated following the model by Bastiaanssen et al. (1998): 

G
Rn

=
[
(LST − 273.15) × (0.0038+ 0.0074× α)×

(
1 − 0.98×NDVI4)] (A.3)  

where LST is the surface temperature (K) and NDVI is the Normalized Difference Vegetation Index (dimensionless), estimated following Rouse et al. 
(1973). 

Sensible heat flux (H) was modeled using: 

H =
ρ × cp × dT

rah
(A.4)  

where ρ is the air density (kg/m3), cp refers to the specific heat of air at constant pressure (J/kg/K), dT is the temperature gradient (K), and rah is the 
aerodynamic resistance for heat transfer (s/m). 

Aerodynamic resistance to heat transport was estimated based on the classical equation given in Paul et al. (2013), see also Verhoef et al. (1997a): 

rah =
1

k × u∗
×

[

ln
(

zref − d0
z0m

)

− ψh

]

+
1

k × u∗
× kB− 1

umd (A.5)  

where k is the von Kármán constant taken as 0.41, u∗ is the friction velocity (m/s), zref is the reference height (m), d0 is zero plane displacement height 
(m), z0m is roughness length for momentum transfer (m), ψh is the atmospheric stability correction function for heat transfer (m), as calculated 
following Paulson (1970), kB− 1

umd is the dimensionless parameter formulated to express the excess resistance of heat transfer compared to momentum 
transfer, corrected for soil moisture derived from remote sensing. 

The friction velocity was computed according to Verhoef et al. (1997b) and Paul et al. (2013): 

u∗ = k × u
[

ln
(

zref − d0
z0m

)

− ψm

]− 1

(A.6)  

where u is the wind speed (m/s) at a known height zref , ψm is the atmospheric stability correction function for momentum transfer (m), as calculated 
following Paulson (1970). 

Roughness length for momentum transport was estimated, based on the studies by Verhoef et al. (1997b): 

z0m = (HGHT − d0) × exp(− k×γ+PSICORR) (A.7)  

where HGHT is the height of the vegetation (m), PSICORR is taken as 0.2 and γ is the inverse of the square root of the bulk surface drag coefficient at 
the roughness canopy height (Raupach, 1992). 
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Zero plane displacement height (d0) was obtained following Raupach (1994) from: 

d0 = HGHT ×

[(

1 −
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CD1 × PAI

√

)

+

(
exp−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CD1×PAI

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CD1 × PAI

√

)]

(A.8)  

where CD1 is taken as 20.6 and PAI is the Plant Area Index. 
γ was following Verhoef et al. (1997b): 

γ =

(

CD + CR ×
PAI

2

)− 0.5

(A.9)  

if γ < 3.33, γ is set to 3.33. Following Verhoef et al. (1997), CD and CR are taken as 0.01 and 0.35, respectively. 
Plant Area Index was calculated according to Miranda et al. (2020) as: 

PAI = 10.1 ×
(

ρNIR −
̅̅̅̅̅̅̅̅̅ρRED

√
)
+ 3.1 (A.10)  

where ρNIR is the near infrared band reflectance, and ρRED is the red band reflectance. If PAI < 0, d0 is set to 0. 
The dimensionless parameter kB− 1

umd is corrected by soil moisture by remote sensing following the equations provided by Gokmen et al. (2012): 

kB− 1
umd = SF × kB− 1 (A.11)  

where SF is a scaling factor, represented by a sigmoid function: 

SF =

[

c+
1

1 + exp(d− e×SMrel)

]

(A.12) 

Here, c, d, e are the sigmoid function coefficients, for which we adopted values of 0.3, 2.5, and 4, respectively, following Gokmen et al. (2012). SMrel 

is the relative soil moisture, obtained from: 

SMrel =
SM − SMmin

SMmax − SMmin
(A.13)  

where SM is the actual soil moisture content, in our case obtained with the GLDAS reanalysis product, and SMmin and SMmax are the minimum and 
maximum soil moisture. The SMmin and SMmax values were obtained using the annual time series analysis of the soil moisture data. 

kB− 1 was calculated according to Su et al. (2001): 

kB− 1 =
k × Cd

4 × Ct × u∗
u(h) ×

(
1 − exp(−

nec
2 )
)× f 2

c +
k × u∗

u(h) ×
z0m

h

C∗
t

× f 2
c × f 2

s + kBs− 1 × f 2
s (A.14)  

where kBs− 1 = 2.46(Re∗)0.25
− 2, Cd is the drag coefficient of the foliage elements taken as 0.2, Ct is the heat transfer coefficient of the leaf with value 

0.01. 
The ratio u∗

u(h) is parameterized as: 

u∗

u(h)
= c1 − c2 × exp(− c3×Cd×PAI) (A.15)  

where c1 = 0.320, c2 = 0.264, c3 = 15.1. 
nec is the extinction coefficient of the wind speed profile within the canopy given by: 

nec =
Cd × PAI

2u∗2

u(h)2

(A.16) 

C∗
t is heat transfer coefficient of the soil given by: 

C∗
t = Pr− 2/3 × (Re)− 1/2 (A.17)  

where Pr is the Prandtl number with a value 0.71, and Re is the Reynolds number calculated as: 

Re =
u∗ × 0.009

v
, v = 1.461 × 10− 5 (A.18)  

where ν is the kinematic viscosity (m2/s). 
In Eq. A.14 fc is the fractional canopy cover calculated according to Eq. (A19), and fs is its complement. 

fc = 1 −

[
NDVI − NDVImax

NDVImin − NDVImax

]0.4631

(A.19) 
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where NDVImax and NDVImin are maximum and minimum NDVI values, respectively. NDVImax and NDVImin values were obtained using the annual time 
series analysis of the NDVI. 

dT in Eq. (A4) was estimated daily with a linear relationship on the surface temperature (Bastiaanssen et al., 1998) as: 

dT = a + b × LST (A.20) 

To find the coefficients a and b in Eq. (A20) requires that hot and cold endmembers pixels are established. The coefficients were found as: 

b =
(dThot − dTcold)

(LSThot − LSTcold)
(A.21)  

a = dTcold − b × LSTcold (A.22)  

dThot/cold =
Hhot/cold × rahhot/cold

ρ × cp
(A.23)  

Hhot/cold = Rnhot/cold − Ghot/cold − λEThot/cold (A.24)  

where dThot/cold are dT values for the hot/dry and cold/wet endmember pixels, respectively, Rnhot/cold, Ghot/cold, LSThot/cold, rahhot/cold are the median 
values extracted on the endmember pixels of each variable. The selection of endmember pixels is detailed in section 2.3. 

λEThot/cold is the term incorporated in the computation of H in the endmember pixels given by the Priestley-Taylor (1972) equation, according to 
Singh and Irmak (2011) and French et al. (2015): 

λEThot/cold =
(
Rnhot/cold − Ghot/cold

)
× fc × αpt ×

[
Δ

Δ + γc

]

(A.25)  

where αpt is the empirical Priestley-Taylor coefficient, nominally set to 1.26, but here adjusted according to local conditions, i.e. we adopted the αpt 
values (0.55 for hot/dry and 1.75 for cold/wet pixels) based on Ai and Yang (2016). Δ is the slope of the saturation vapor pressure-air temperature 
curve (kPa/ ◦C) and γc is the psychrometric constant (kPa/ ◦C). 

The actual daily evapotranspiration (mm/day) was obtained by means of the following relationship: 

ET24h,=
8, 640, 0

(
, 2.5, 01− , 0.0, 023, 6 ×, T,a

)
, ×, 10,6

×
λET

Rn − G
× Rn24h (A.26)  

where Ta is the mean daily air temperature ( ◦C), λET is derived from Eq. A1, and Rn24h corresponds to the daily net radiation (W/m2); in this study 
both driving variables were obtained with data from the ERA5-Land product. 
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of remote sensing for reliable estimation of net radiation and its components: a case 
study for contrasting land covers in an agricultural hotspot of the Brazilian semiarid 
region. Agric. For. Meteorol. 291, 108052 https://doi.org/10.1016/j. 
agrformet.2020.108052. 

Foken, T., 2008. The energy balance closure problem: an overview. Ecol. Appl. 18 (6), 
1351–1367. https://doi.org/10.1890/06-0922.1. 

French, A.N., Hunsaker, D.J., Thorp, K.R., 2015. Remote sensing of evapotranspiration 
over cotton using the TSEB and METRIC energy balance models. Remote Sens. 
Environ. 158, 281–294. https://doi.org/10.1016/j.rse.2014.11.003. 

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Michaelsen, J., 
2015. The climate hazards infrared precipitation with stations—A new 
environmental record for monitoring extremes. Sci. Data 2 (1), 1–21. https://doi. 
org/10.1038/sdata.2015.66. 

Gan, R., Zhang, Y., Shi, H., Yang, Y., Eamus, D., Cheng, L., …, Yu, Q., 2018. Use of 
satellite leaf area index estimating evapotranspiration and gross assimilation for 
Australian ecosystems. Ecohydrology 11 (5), e1974. https://doi.org/10.1002/ 
eco.1974. 

Gokmen, M., Vekerdy, Z., Verhoef, A., Verhoef, W., Batelaan, O., van der Tol, C., 2012. 
Integration of soil moisture in SEBS for improving evapotranspiration estimation 
under water stress conditions. Remote Sens. Environ. 121, 261–274. https://doi.org/ 
10.1016/j.rse.2012.02.003. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 
Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. 
Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031. 

Gupta, H.V., Sorooshian, S., Yapo, P.O., 1999. Status of automatic calibration for 
hydrologic models: comparison with multilevel expert calibration. J. Hydrol. Eng. 4 
(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135. 

Hallak, R., Pereira Filho, A.J., 2011. Metodologia para análise de desempenho de 
simulações de sistemas convectivos na região metropolitana de São Paulo com o 
modelo ARPS: sensibilidade a variações com os esquemas de advecção e assimilação 
de dados. Revista Brasileira de Meteorologia 26, 591–608. https://doi.org/10.1590/ 
S0102-77862011000400009. 

Hollinger, D.Y., Richardson, A.D., 2005. Uncertainty in eddy covariance measurements 
and its application to physiological models. Tree Physiol. 25 (7), 873–885. https:// 
doi.org/10.1093/treephys/25.7.873. 

Jaafar, H., Mourad, R., Schull, M., 2022. A global 30-m ET model (HSEB) using 
harmonized Landsat and Sentinel-2, MODIS and VIIRS: comparison to ECOSTRESS 
ET and LST. Remote Sens. Environ. 274, 112995 https://doi.org/10.1016/j. 
rse.2022.112995. 

Jia, L., Su, Z., van den Hurk, B., Menenti, M., Moene, A., De Bruin, H.A., …, Cuesta, A., 
2003. Estimation of sensible heat flux using the Surface Energy Balance System 
(SEBS) and ATSR measurements. Phys. Chem. Earth, Parts A/B/C 28 (1–3), 75–88. 
https://doi.org/10.1016/s1474-7065(03)00009-3. 

Kayser, R.H., Ruhoff, A., Laipelt, L., de Mello Kich, E., Roberti, D.R., de Arruda Souza, V., 
Neale, C.M.U, 2022. Assessing geeSEBAL automated calibration and meteorological 
reanalysis uncertainties to estimate evapotranspiration in subtropical humid 
climates. Agric. For. Meteorol. 314, 108775 https://doi.org/10.1016/j. 
agrformet.2021.108775. 

Koch, R., Almeida-Cortez, J.S., Kleinschmit, B., 2017. Revealing areas of high nature 
conservation importance in a seasonally dry tropical forest in Brazil: combination of 
modelled plant diversity hot spots and threat patterns. J. Nat. Conserv. 35, 24–39. 
https://doi.org/10.1016/j.jnc.2016.11.004. 

Kustas, W., Choudhury, B., Moran, M., Reginato, R., Jackson, R., Gay, L., Weaver, H., 
1989a. Determination of sensible heat flux over sparse canopy using thermal 
infrared data. Agric. For. Meteorol. 44 (3–4), 197–216. https://doi.org/10.1016/ 
0168-1923(89)90017-8. 

Kustas, W.P., Choudhury, B.J., Kunkel, K.E., Gay, L.W., 1989b. Estimate of the 
aerodynamic roughness parameters over an incomplete canopy cover of cotton. 
Agric. For. Meteorol. 46 (1–2), 91–105. https://doi.org/10.1016/0168-1923(89) 
90114-7. 

Laipelt, L., Ruhoff, A.L., Fleischmann, A.S., Kayser, R.H.B., Kich, E.de M., da Rocha, H.R., 
Neale, C.M.U, 2020. Assessment of an automated calibration of the SEBAL algorithm 
to estimate dry-season surface-energy partitioning in a Forest–Savanna Transition in 
Brazil. Remote Sens. (Basel) 12 (7), 1108. https://doi.org/10.3390/rs12071108. 

Laipelt, L., Henrique Bloedow Kayser, R., Santos Fleischmann, A., Ruhoff, A., 
Bastiaanssen, W., Erickson, T.A., Melton, F., 2021. Long-term monitoring of 
evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud 
computing. ISPRS J. Photogramm. Remote Sens. 178, 81–96. https://doi.org/ 
10.1016/j.isprsjprs.2021.05.018. 

Lhomme, J.P., Chehbouni, A., Monteny, B., 2000. Sensible heat flux-radiometric surface 
temperature relationship over sparse vegetation: parameterizing B-1. Boundary 
Layer Meteorol. 97 (3), 431–457. https://doi.org/10.1023/a:1002786402695. 

Liao, J.J., Lewis, J.W., 2000. A note on concordance correlation coefficient. PDA J. 
Pharm. Sci. Technol. 54 (1), 23–26. 

Lima, A.L.A., Rodal, M.J.N., 2010. Phenology and wood density of plants growing in the 
semi-arid region of northeastern Brazil. J. Arid Environ. 74 (11), 1363–1373. 
https://doi.org/10.1016/j.jaridenv.2010.05.009. 
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Cunha, J., 2022. Remote sensing phenology of the brazilian caatinga and its 
environmental drivers. Remote Sens. (Basel) 14 (11), 2637. https://doi.org/ 
10.3390/rs14112637. 

Meier, R., Davin, E.L., Swenson, S.C., Lawrence, D.M., Schwaab, J., 2019. Biomass heat 
storage dampens diurnal temperature variations in forests. Environ. Res. Lett. 14 (8), 
084026 https://doi.org/10.1088/1748-9326/ab2b4e. 

Melo, D.C.D., Anache, J.A.A., Borges, V.P., Miralles, D.G., Martens, B., Fisher, J.B., 
Wendland, E., 2021. Are remote sensing evapotranspiration models reliable across 
South American ecoregions? Water Resour. Res. 57 (11) https://doi.org/10.1029/ 
2020wr028752. 

Mhawej, M., Caiserman, A., Nasrallah, A., Dawi, A., Bachour, R., Faour, G., 2020. 
Automated evapotranspiration retrieval model with missing soil-related datasets: the 
proposal of SEBALI. Agric. Water Manage. 229, 105938 https://doi.org/10.1016/j. 
agwat.2019.105938. 

Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Gordon, J.E., 2006. 
A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33 
(3), 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x. 
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