Skip navigation
SAL logo
  • Página de inicio
  • Listar
    • Comunidades
    • Buscar elementos por:
    • Fecha Publicación
    • Autor
    • Título
    • Materia
  • Reglas y Regulaciones
  • Acerca de
  • Contacto
  • Language
    • español
    • English
    • português
  • Servicios
    • Mi DSpace
    • Alertas
    • Editar perfil
SAL logo

  1. Biblioteca Digital dos Semiáridos
  2. Agrobiodiversidade
  3. Floresta
  4. Florestas Secas e Vegetação Nativa
Por favor, use este identificador para citar o enlazar este ítem: https://bibliotecasemiaridos.ufv.br/jspui/handle/123456789/2574
Título : STEEP: a remotely-sensed energy balance model for evapotranspiration estimation in seasonally dry tropical forests
Autor : Bezerra, Ulisses A.
Cunha, John
Valente, Fernanda
Nóbrega, Rodolfo L. B.
Andrade, João M.
Moura, Magna S. B.
Verhoef, Anne
Perez-Marin, Aldrin M.
Galvão, Carlos O.
Palabras clave : Sensible heat flux
Aerodynamic resistance for heat transfer
Surface energy balance
Caatinga
Google Earth Engine
Fecha de publicación : 2023
Editorial : Elsevier
Citación : BEZERRA, U. A. et. al. STEEP: a remotely-sensed energy balance model for evapotranspiration estimation in seasonally dry tropical forests. Agricultural and Forest Meteorology, [s. l.], v. 333, n. 109408, p. 1-20, 2023. Disponível em: https://doi.org/10.1016/j.agrformet.2023.109408. Acesso em: 22 jun. 2023.
Resumen : Improvement of evapotranspiration (ET) estimates using remote sensing (RS) products based on multispectral and thermal sensors has been a breakthrough in hydrological research. In large-scale applications, methods that use the approach of RS-based surface energy balance (SEB) models often rely on oversimplifications. The use of these models for Seasonally Dry Tropical Forests (SDTF) has been challenging due to incompatibilities between the assumptions underlying those models and the specificities of this environment, such as the highly contrasting phenological phases or ET being mainly controlled by soil–water availability. We developed a RS-based SEB model from a one-source bulk transfer equation, called Seasonal Tropical Ecosystem Energy Partitioning (STEEP). Our model uses the plant area index to represent the woody structure of the plants in calculating the moment roughness length. We included the parameter kB− 1 and its correction using RS soil moisture in the calculation of the aerodynamic resistance for heat transfer. Besides, λET caused by remaining water availability in endmembers pixels was quantified using the Priestley-Taylor equation. We implemented the algorithm on Google Earth Engine, using freely available data. To evaluate our model, we used eddy covariance data from four sites in the Caatinga, the largest SDTF in South America, in the Brazilian semiarid region. Our results show that STEEP increased the accuracy of ET estimates without requiring any additional climatological information. This improvement is more pronounced during the dry season, which, in general, ET for these SDTF is overestimated by traditional SEB models, such as the Surface Energy Balance Algorithms for Land (SEBAL). The STEEP model had similar or superior behavior and performance statistics relative to global ET products (MOD16 and PMLv2). This work contributes to an improved understanding of the drivers and modulators of the energy and water balances at local and regional scales in SDTF.
URI : https://bibliotecasemiaridos.ufv.br/jspui/handle/123456789/2574
Aparece en las colecciones: Florestas Secas e Vegetação Nativa

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Texto completo.pdfTexto completo11,36 MBAdobe PDFVisualizar/Abrir
Mostrar el registro Dublin Core completo del ítem


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

Theme by Logo CINECA

DSpace Software Copyright © 2002-2008 MIT and Hewlett-Packard - Comentarios