Skip navigation
SAL logo
  • Página de inicio
  • Listar
    • Comunidades
    • Buscar elementos por:
    • Fecha Publicación
    • Autor
    • Título
    • Materia
  • Reglas y Regulaciones
  • Acerca de
  • Contacto
  • Language
    • español
    • English
    • português
  • Servicios
    • Mi DSpace
    • Alertas
    • Editar perfil
SAL logo

  1. Biblioteca Digital dos Semiáridos
  2. Agrobiodiversidade
  3. Criação de Animais
  4. Caprinos
Por favor, use este identificador para citar o enlazar este ítem: https://bibliotecasemiaridos.ufv.br/jspui/handle/123456789/2932
Título : Deep learning with aerial surveys for extensive livestock hotspot recognition in the Brazilian Semi-arid Region
Otros títulos : Deep learning no levantamento aéreo de hotspots para pecuária extensiva no Semiárido Brasileiro
Autor : Lima, Mayara Lopes de Freitas
Souza, Samara Maria Farias de
Sá, Isabelle Ventura de
Santana, Otacilio Antunes
Palabras clave : Industry 4.0
Convolutional neural network
Sustainable farming
Smart factory
Semiarid
Indústria 4.0
Rede neural convolucional
Agricultura sustentável
Fábrica inteligente
Semiárido
Fecha de publicación : 2023
Editorial : Ciência e agrotecnologia
Citación : LIMA, M. L. F; SOUZA, S. M. F; SÁ, I. V; SANTANA, O. A. Deep learning with aerial surveys for extensive livestock hotspot recognition in the Brazilian Semi-arid Region. Ciência e agrotecnologia, [s. l.], v. 47, e010922, 2023.
Citación : Ciência e agrotecnologia;v. 47; e010922
Resumen : In the Brazilian Semi-arid Region, extensive livestock farming with ecoproductive management is the most efficient way to maintain and increase the production of goat products (e.g., meat) with of not depleting environmental resources. This set of actions (induced goat migration and pasture closure) is part of Livestock 4.0, in which Industry 4.0 feed areas are efficiently managed using artificial intelligence and deep learning properly monitored by the producer and the consumer. The objective of this work was to identify pasture areas with Opuntia ficus-indica (Mill, Cactaceae) forage palm species for breeding and production of Capra aegagrus-hircus goats (Lineu, Bovidae) using aerial survey images captured by drones classified using deep learning techniques. The methodological steps of the Industry Architecture Reference Model 4.0 were adapted to the field situation (Semi-arid Region) including (A) study area delimitation, (B) image collection (by drones), (C) deep learning training, convolutional neural network (CNN) training, (D) training accuracy analysis, and (E) automatic goat production evaluation and validation. The area classification based on the forage palm density allowed us to measure the environmental degradation caused by livestock. Stimulated goat migration reduced this degradation as well as increased goat biomass and volume production. No Semiárido Brasileiro, a pecuária extensiva em manejo ecoprodutivo é a forma mais eficiente de manter e aumentar a produção de produtos caprinos (e.g. carne), além de não esgotar os recursos ambientais. Esse conjunto de ações (migrações induzidas e defeso de pastagem) faz parte da chamada Pecuária 4.0, em que as áreas de alimentação das Indústrias 4.0 são gerenciadas de forma eficiente por inteligência artificial e aprendizagem profunda, e devidamente monitoradas pelo produtor e consumidor. O objetivo deste trabalho foi identificar áreas de pastagem com espécies de palmeiras forrageiras Opuntia ficus-indica (Mill, Cactaceae), para reprodução e produção de caprinos Capra aegagrus-hircus (Lineu, Bovidae) por meio de levantamento aéreo a partir de imagens capturadas por drones e classificação por técnica de aprendizagem profunda. As etapas metodológicas seguiram o Modelo de Referência para Arquitetura da Indústria 4.0 adaptada para a situação de campo (Semiárido), com: (A) delimitação da área de estudo, (B) coleta de imagens (por drones), (C) treinamento de aprendizagem profunda, treinamento de rede neural convolucional - RNC, (D) análise da precisão do treinamento, e (E) avaliação e validação automática da produção caprina. A classificação das áreas pela densidade da palmeira forrageira permitiu medir a degradação ambiental da pecuária. A partir disso, a migração de cabras estimulada reduziu essa degradação, bem como aumentou a biomassa caprina e a produção de volume.
URI : https://bibliotecasemiaridos.ufv.br/jspui/handle/123456789/2932
ISSN : 1981-1829
Aparece en las colecciones: Caprinos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Texto completo.pdfTexto completo1,89 MBAdobe PDFVisualizar/Abrir
Mostrar el registro Dublin Core completo del ítem


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

Theme by Logo CINECA

DSpace Software Copyright © 2002-2008 MIT and Hewlett-Packard - Comentarios